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Abstract. Mixed vascular and Alzheimer-type dementia and pure Alzheimer’s disease are both associated with changes in
spoken language. These changes have, however, seldom been subjected to systematic comparison. In the present study, we
analyzed language samples obtained during the course of a longitudinal clinical study from patients in whom one or other
pathology was verified at post mortem. The aims of the study were twofold: first, to confirm the presence of differences in
language produced by members of the two groups using quantitative methods of evaluation; and secondly to ascertain the most
informative sources of variation between the groups. We adopted a computational approach to evaluate digitized transcripts of
connected speech along a range of language-related dimensions. We then used machine learning text classification to assign the
samples to one of the two pathological groups on the basis of these features. The classifiers’ accuracies were tested using simple
lexical features, syntactic features, and more complex statistical and information theory characteristics. Maximum accuracy was
achieved when word occurrences and frequencies alone were used. Features based on syntactic and lexical complexity yielded
lower discrimination scores, but all combinations of features showed significantly better performance than a baseline condition
in which every transcript was assigned randomly to one of the two classes. The classification results illustrate the word content
specific differences in the spoken language of the two groups. In addition, those with mixed pathology were found to exhibit a
marked reduction in lexical variation and complexity compared to their pure AD counterparts.
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INTRODUCTION

Engaging in spoken communication is a complex,
multidimensional skill that draws on a wide variety
of cognitive domains, including semantic memory,
syntactic knowledge, and phonological abilities, and
is consequently dependent on a large and widely
distributed network of cortical and subcortical brain

ISSN 1387-2877/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

mailto:pgarrard@sgul.ac.uk


S4 V. Rentoumi et al. / Language of Pure Versus Mixed Alzheimer’s Disease

regions. It is not surprising, therefore, that degenerative
conditions, such as Alzheimer’s disease (AD), in which
the pathological lesion is diffuse, are commonly asso-
ciated with deficits across a range of subcomponents
of linguistic competence [1–3].

Although language deterioration may precede clin-
ical recognition of AD [4], it typically manifests in
the early stages of the disease in the form of word
finding difficulty, and is often accompanied by a mild
to moderate degree of anomia related in large part to
the disintegration of semantic memory [5]. Analyses
of spoken discourse at early disease stages, based on
the results of standardized assessment schedules, have
confirmed the presence of semantic impairment [3] as
well as more subtle abnormalities, such as an increased
rate of lexical errors and a reduction in syntactic com-
plexity [6].

Impairment of spoken language is also a feature
of vascular cognitive impairment (VCI) and vascular
dementia (VaD), though evidence that the linguistic
profile differs from that of AD is equivocal. Some
comparisons of language related test performance in
patients with clinical diagnoses of AD and VaD, based
on batteries of speech and language tests, have sug-
gested a greater variety of language deficits in the latter
group [7]. In particular, patients with VaD typically
exhibit difficulties on measures of verbal fluency and
motor aspects of speech, probably due to frontal exec-
utive deficits, which are less pronounced in AD [7, 8].
Other studies [7, 9] report a greater reduction in syn-
tactic complexity in the speech of VaD patients, with
conciseness well maintained in both groups. In con-
trast, Kontiola et al. [10], found that VaD patients had
most difficulty with basic language abilities such as
recognition of words, naming, and repetition, while
AD patients had more difficulties with understand-
ing and producing complex grammatical structures.
Comparisons based on narrative speech, however, have
revealed less distinct patterns of impairment [5].

The inconsistency of these comparative studies may
be due to variations in the methods of assessment used
(some involved naming tasks while others involved
elicitation of connected speech), but almost certainly
reflects, in addition, the frequent coexistence of the
two pathologies, which limits their definitive distinc-
tion at the clinical level. Finally, at the time of clinical
presentation, patients may have declined on cognitive
and linguistic measures beyond the stage at which their
profiles can be readily distinguished [2].

The approach adopted in the present study overcame
these limitations by introducing a number of modifi-
cations to previous methods. In the first place, we used

retrospective language data consisting of samples of
connected speech taken from archived testing sessions
that had been conducted on participants in a longitu-
dinal study of ageing and dementia. In the study in
question (the Oxford Project to Investigate Memory
and Ageing (OPTIMA) [11], serial clinical evaluation
was performed annually until death, and in more than
80% of cases post mortem examination was carried out.
As a result, we were able to ensure not only that lan-
guage sampling took place at a uniform stage of clinical
progression, but also that the disease groups could
be defined according to the gold standard of patho-
logical information obtained at postmortem, avoiding
the uncertainty and circularity of relying on clinical
diagnosis. Secondly, in order to mimic the practical
scenario in which clinical differentiation would most
commonly be required, we divided the patients accord-
ing to the degree of vascular pathology that was present
at postmortem in addition to, rather than instead of,
plaque and tangle pathology.

Analysis of the language samples was conducted
using automatic feature selection and machine learn-
ing (ML) classification algorithms [12] to identify key
distinctive characteristics and use them to maximize
the correct diagnostic classification by pathological
group. These methods take account of the multidimen-
sional and probabilistic nature of pattern recognition,
but have only recently appeared in the field of dementia
diagnosis: Fraser et al. in [13] applied a ML approach
using features that could be automatically extracted
from digital samples of connected speech, to distin-
guish among different subtypes of primary progressive
aphasia. Garrard et al. [15] applied ML classification
techniques to distinguish discourse samples produced
by patients with semantic dementia from those of nor-
mal controls, but based solely on the lexical features
of the two sets of transcripts. Here, we use a combina-
tion of automatically extracted pure lexical, and more
complex linguistic (e.g., syntactic and textual), charac-
teristics to define the features of interest, and test their
predictive value with ML classifiers.

MATERIALS AND METHODS

Study sample

The study sample consisted of transcripts of con-
nected speech, recorded in the course of regular (six to
twelve monthly) interval assessments of participants in
OPTIMA—a longitudinal study of aging and dementia
in a cohort of elderly, community living volunteers. In
many individuals who entered the study with normal
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cognition, longitudinal assessment included conver-
sion to and progression through successive stages of
dementia. Interval assessment included neuroimag-
ing, blood and cerebrospinal fluid sampling, physical
examination and, of particular interest to this study,
neuropsychological evaluation. At entry into the study,
all participants were invited to consent to post mortem
examination. Participants included in the current study
had enrolled in OPTIMA between 1988 and 2008. All
were either classified as either cognitively normal or as
meeting criteria for mild cognitive impairment (MCI)
at study entry. Diagnoses were regularly updated
during follow-up assessments, with an increasing pro-
portion of patients reclassified as probable AD over
time. Data from 36 subjects were used for the present
study, all of whom had been followed up until death,
and in all of whom a pathological diagnosis of AD
had been made at post mortem. The appearances
documented in the pathologist’s report allowed cat-
egorisation of participants into two equally sized
groups: 1) Mixed AD (ADm): plaque and tangle pathol-
ogy together with cerebrovascular disease that was
described in the pathologist’s report as being moderate
to severe; 2) Pure AD (ADp): plaque and tangle pathol-
ogy with absent or minimal cerebrovascular change.

Participants in both groups fell within the mild to
moderate range of cognitive impairment (as defined
by a: Mini-Mental State Examination (MMSE) scoring
range 10–25) at the time of language sampling, and
were matched as closely as possible for age, gender
distribution, and years of education.

Table 1 shows group comparisons of demograph-
ics and cognitive performance based on assessment
using the CAMCOG instrument. CAMCOG, which
forms part of the Cambridge Mental Disorders of the
Elderly Examination (CAMDEX) [15] interview, com-
prises eight major subtests that correspond to different
areas of cognitive function, as well as a derived MMSE
score [16]. CAMCOG covers a broader range of cog-
nitive domains than the MMSE, assessing orientation,
language, memory, praxis, attention, abstract thinking,
perception, and calculation, and was administered at
every assessment date for each participant, with ses-
sions tape-recorded and archived for future use.

As Table 1 shows, there were no significant differ-
ences in age or gender distribution between the two
groups, nor in the number of years spent in full time
education. While there was no significant difference in
performance on the MMSE between the AD groups,
Tukey post hoc t-tests confirmed significant differences
on 7 out of 11 CAMCOG subtests between the ADp and
ADm group. Of particular note, participants with ADm

Table 1
ADp and ADm groups’ comparison of demographics and cognitive
performance. Comparisons ADp and ADm patient groups computed
using Tukey’s post-hoc tests and Chi-square for comparison of gen-

der ratio; Maximum scores given in parentheses

ADp (n = 18) ADm (n = 18)
Mean SD Mean SD

Demographics
Age (y) 74.3 9.13 75.1 7.34 n.s
Education (y) 13.1 3.1 11.7 3.3 n.s
Gender (male: female) 12 : 6 6 : 12 n.s
MMSE (30) 21.1 3.6 18.6 4.8 n.s

CAMCOG scores
Total (107) 75.6 8.3 58.2 17.1 ∗∗∗∗
Orientation (10) 6.6 2.3 6.3 1.8 n.s
Comprehension (9) 7.9 1.2 7.6 1.3 n.s.
Expression (21) 16.2 1.9 13.7 3.7 ∗
Remote memory (6) 4.4 1.3 2.8 1.5 ∗∗∗
Recent memory (4) 2.5 1.0 1.8 1.3 n.s
Learning memory (17) 7.0 3.6 4.1 3.0 ∗∗
Attention (7) 5.1 1.9 3.1 2.6 ∗∗
Praxis (12) 9.4 1.6 8.1 0.8 n.s
Calculation (2) 1.7 0.6 0.9 0.8 ∗∗∗∗
Abstract thinking (8) 5.7 1.9 3.2 2.9 ∗∗
Perception (11) 9.1 1.4 6.6 2.7 ∗∗∗∗

Means (M) and standard deviations (SD) of demographic data.
Cognitive performance n.s. = not significant. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. MMSE, Mini-Mental State Examina-
tion.

performed significantly worse (p-values ≤0.012) than
ADp in: expression, remote memory, learning memory,
attention, calculation, abstract thinking, and percep-
tion. Orientation, comprehension, recent memory, and
praxis were not significantly different (p > 0.05).

Language data

The data for the present study consisted of a total
of 36 transcribed samples (Supplementary Material) of
connected speech obtained from the two groups. These
transcripts were obtained using the ‘Cookie theft’ pic-
ture description test, which forms part of the Boston
Diagnostic Aphasia Examination [17], and is also a
component of the CAMCOG. All test sessions were
transcribed using standard English orthography, fol-
lowing the conventions described in Garrard et al. [18].

Transcript analysis

The aim of the analysis was to classify every tran-
script correctly with respect to its subgroup (ADp
versus ADm) of origin. The analysis took place in
three consecutive stages, with the output of the first
two stages each providing input for the next.
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In the first stage, features were extracted from all
transcripts to create a set of values corresponding to
distinct features of each text. We considered features
as belonging to three broad categories: i) purely lexical
features, which consisted of word types and their fre-
quencies (token counts) found within each transcript;
ii) syntactic complexity; and iii) textual features, which
included indices of lexical variation [19, 20], and mea-
sures derived from information theory. Features were
obtained using Lu’s L2 Syntactic Complexity Analyzer
[22], and Keyplex (a textual analysis program whose
output consists of values for a range of statistical and
lexical measures). In addition, a compression ratio fea-
ture was computed using the zlib library of the Python
programming language.

The second stage of the analysis consisted of feature
selection, in which those features that differentiated the
transcripts of participants with ADp from those with
ADm were identified. The final stage was ML classi-
fication, in which the selected features were used to
‘train’ the ML classifier to assign transcripts to one of
the two groups.

The ML, feature selection, and text classification
stages of the methodology were implemented using
the Waikato Environment for Knowledge Analysis
(WEKA; http://www.cs.waikato.ac.nz/ml/weka) [23].
Methodology for all stages is described in detail in the
following three sections.

Feature extraction

A detailed list of automatically extracted features
and their definitions can be found in Table 2.

The first two features, which form the purely lexi-
cal category, are frequency and binary unigrams (i.e.,
word types and their frequencies of occurrence or pres-
ence/absence values) derived from each transcript. A
total of 529 frequency/binary unigram features were
extracted. Such ‘pure lexical’ information has proved
useful in discriminating discourse samples produced
by patients with semantic dementia from those of nor-
mal controls [4]. In that study, as here, the transcripts
were represented under the ‘bag-of-words’ assumption
(i.e., without any information relating to word order),
which has been found to produce a robust solution in
text classification by capturing word content-related
and frequency-related differences that are relevant to
the categories under investigation.

The choice to employ purely word frequency and
word presence/absence related features is also sup-
ported by the observation that the poorer language
ability seen in patients with VaD is associated with

less lexical variety and decreased complexity [24]. We
might also expect certain words that appear in the ADm
vocabulary to be of lower frequency than those in the
ADp vocabulary [5].

The next 14 features belong to the syntactic com-
plexity category and were calculated using Lu’s L2
Syntactic Complexity Analyzer [22]. Syntactic com-
plexity is defined by Ortega in [21] as the range, and
degree of sophistication, of forms that surface in lan-
guage production. Lu used these features to analyze the
syntactic complexity of college-level English essays
from Chinese students, and the tool has also been
employed in an analysis of narrative speech transcripts
produced by patients with different subtypes of pri-
mary progressive aphasia [13] and right versus left
temporal lobe predominant semantic dementia [14].

The next 7 features belong to the textual category:
the first 5 (features 17–21) are relevant to lexical com-
plexity and variation and the last two to information
theory measures. Using lexical variation measures [19,
20] we were able automatically to measure the vocab-
ulary range in each patient group as displayed in their
transcripts. In particular, Honoré’s R [22] takes into
account the probability that the participant will re-
use a given word type in the text rather than using
a new one. This is calculated as the ratio of the words
occurring once only in the vocabulary (hapax legom-
ena), to the total number of distinct words. Thus, for a
given text length, the value of R is higher when there
are more hapax legomena and thus less repetition. We
also used a related measure, Simpson’s D [23], which
gives the probability that two words that have been
randomly selected from the text are the same. This
measure quantifies the rate of word repetition in sam-
ples; lower values of D indicating less repetitive texts.
Similarly, in the dis legomena over vocabulary mea-
sure (i.e., words that occur twice divided by the total
number of different words appearing in the transcript),
higher values of the measure imply a poorer vocabu-
lary. On the other hand, higher rates of hapax legomena
and pair-hapax legomena (i.e., once used token-pairs)
imply a more varied language use.

The first information theory feature uses Shannon
entropy (H) [24] computed in transcripts. In infor-
mation theory, H is equivalent to the amount of
information (measured in bits) that is added when the
value of a previously unknown variable is obtained.
The entropy of a random variable equates to its
unpredictability. Shannon showed how information
content [25] could also be measured in written lan-
guage, empirically determining the accuracy with
which a reader could predict the identity of sequentially

http://www.cs.waikato.ac.nz/ml/weka
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Table 2
Definitions of features extracted from ADp and ADm data sets. ∗Values of these variables represented the mean of the values computed across

sequential blocks of 10 words within each speech transcript

Features category Features definition

Purely Lexical
1 Binary Unigrams Presence/Absence of word types
2 Frequency Unigrams Frequency of word types

Syntactic Complexity
3 MLC (Mean Length of Clause) number of words/number of clause (clause: a structure consisting of at least a subject

and a finite verb)
4 MLS (Mean Length of Sentence) number of words/number of sentences
5 MLT (Mean Length of T-Unit) number of words/number of T-units (T-Unit: one main clause plus any subordinate

clause or non clausal structure that is attached to or embedded in it)
6 C/S (Sentence complexity ratio) number of clauses/number of sentences
7 C/T (T-unit complexity ratio) number of clauses/number of T-units
8 CT/T (Complex T-unit ratio) number of complex T-units/number of T-units complex T-unit: a T-unit that contains a

dependent clause
9 DC/C (Dependent clause ratio) number of dependent clauses/number of clauses dependent clauses: clause which

could not form a sentence on its own
10 DC/T (Dependent clauses per T-unit) number of dependent clauses/number of T-units
11 CP/C (Coordinate phrases per clause) number of coordinate phrases/number of clauses coordinate phrase: a phrase

immediately before a coordinating conjunction (e.g. and, or)
12 CP/T (Coordinate phrases per T-unit) number of coordinate phrases/number of T-units
13 T/S (Sentence coordination ratio) number of T-units/number of sentences
14 CN/C (Complex nominals per clause) number of complex nominal/number of clauses (Complex nominals: they comprise (i)

nouns plus adjective, possessive, prepositional phrase, relative clause, participle, or
appositive, (ii) nominal clauses, and (iii) gerunds and infinitives in subject position)

15 CN/T (Complex nominals per T-unit) number of complex nominals/number of T-units
16 VP/T (Verb phrases per T-unit) number of verb phrases/number of T-units

Textual
17 Honore R (R) R = 100 log(N)/(1–V1/V)

N = text length
V1 = number of hapax legomena (once-used tokens), V = number of different words

(types)
18 ∗Mean of hapax legomena number of hapax legomena (once-used tokens)/text block of 10 words
19 ∗Mean of pair-hapax legomena mean number pair-hapaxlegomena (i.e. of once-used token-pairs)/text block of 10

words
20 ∗Mean of Simpson’s diversity index (D) D =

∑v

i=1 i(i − 1) V (i,N)
N(N−1)

N = number of word occurrences (i.e. tokens), V (i, N) = the number of types which
occur i times in a sample of N tokens, and v the highest frequency of occurrence

21 Dis legomena over Vocabulary number of dis legomena (tokens that are repeated twice)/number of different words
(types)

22 ∗Shannon Entropy (H) Mean H/text block of 10 words
H(X) = −

∑n

i=1 p(xi) logb p(xi)
Minus is used because for values less than 1 logarithm is negative

23 Compression Ratio (CR) Compressed Size of a file (zipped)/Uncompressed size of a file (unzipped)

revealed characters (including spaces) in a segment of
text. Thus, H is related to the information content of
language insofar as less patterned sequences (in this
case, sentences) convey high entropy and are highly
informative. On the other hand, a patterned and pre-
dictable sequence conveys low entropy, and is less
informative.

The final measure used was another information the-
ory feature, the compression ratio (CR) [26], which
was employed to compute the repetitiveness in each
patient’s transcript. Compression is achieved by con-
densing a piece of data such that it takes up less
space than it did originally, but still contains the same

amount of information [27]. Compression on texts
works by reducing the redundancy of a text by omitting
words that are repeated, allowing a repetitive text to be
compressed to a greater extent than a non-repetitive
one. Compression ratio is the ratio of the size of the
compressed text to its original (uncompressed) size.
From the above, it follows that the notions of entropy
and compression are tightly correlated. Intuitively, we
expect a text with low entropy and low information
content to have a high compression capacity, since
its structure will be more patterned and predictable,
while a text with higher entropy carrying more new
information will have a smaller compression potential.
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Both the lexical variation and the information theory
features are included in the textual category, as vocab-
ulary studies [28] manifest a strong inter-correlation
among all these kinds of features. In practice, increased
lexical richness is associated with an increased entropy,
and thus with a greater degree of randomness and
uncertainty, which would be expected to characterize a
text with less repetitiveness and a lower compressibil-
ity. We would expect our experiments to confirm this
assumption.

Since some textual category features such as hapax
legomena, pair-hapax legomena, Simpson’s diversity
index (D) and entropy (H) are sensitive to document
length we computed their mean values across sequen-
tial blocks of 10 words within each speech transcript.
We adopted this convention in order to normalize the
text length, as the transcript lengths vary from 26 to
164 words.

Feature selection

Not all features are of equal relevance in a
classification problem, and identification of those
with the highest impact can improve classifica-
tion performance, as well as providing insights into
between-group language differences. To establish the
relevance of the features described above, we used
a correlation-based feature selection approach (CFS)
[29]. CFS is a filter approach that uses a correlation-
based heuristic to determine the usefulness of features.
According to this approach the unnecessary or redun-
dant features are filtered out of the data.

CFS uses a search algorithm together with a func-
tion to evaluate the usefulness of feature subsets.
Specifically, the heuristic approach employed by CFS
measures the appropriateness of each feature for pre-
dicting a class label—in this case the ADp and ADm
groups—together with the level of intercorrelation
among them. The function used to compute these
correlations is based on conditional entropy [30].
The resulting feature subsets contain features that are
highly correlated with the class, yet uncorrelated with
each other. These feature subsets are then evaluated
using a ML classification approach (see below). CFS
was selected because it is considered a good fit in cases
where large numbers of features are employed [29].

Machine learning text classification

A ML classification approach was used to predict the
group (ADp or ADm) to which each participant’s tran-
script belonged, based solely on the features selected

in the step described above. For each transcript, the
corresponding values of the selected features formed a
feature vector representation of the transcript. The ulti-
mate goal of a ML text classification is to accept a fea-
ture vector of an unknown group and provide as output
a group label for it (in this case, either ADp or ADm).

Representation of narrative speech transcripts by
vectors

In order to perform classification exploiting the
binary and the frequency unigram feature sets (see
above) representing the transcripts, we consider that
each transcript was represented by a feature vector of
the form: <w1x1, . . . , wmxm> cn, where w1, . . . ,wm
are the word types1 found in the set of transcribed texts
examined, and x1 . . . xm denote the frequencies (i.e.,
the number of times the corresponding words occurred
in a transcript) or the presence/absence of each word
type in the transcript. Within the vector representation
word types are used as labels for words for the sake of
completeness in order to indicate that each word fea-
ture is assigned a value, word tokens themselves have
not been used in the classification process. Each fea-
ture vector representation of a transcript is assigned to
one of the groups, which is denoted by cn. It should
be noted that: i) word types are derived from actual
words rather than lemmatized forms; and ii) the fre-
quency assigned to each word type reflects its raw
(rather than normalized) frequency of occurrence in
each transcript.

In using the remaining categories of syntactic com-
plexity and textual features, the classification was
performed using the following representation for each
transcript: <m1x1, . . . ,mkxk> cn, where m1, . . . ,mk
are the corresponding features extracted from the tran-
scripts. x1, . . . ,xk denote the numeric output value of
each of these specific features computed on the tran-
script, and cn indicates to which of the two groups ADp,
ADm each transcript is assigned during the classifica-
tion task.

In general, a ML classifier is provided with an input
of a set of vector representations of transcripts already
assigned to a group (the ‘training data’). Then the
trained classifier (i.e., classification model) is provided
with a new set of unseen transcripts (the ‘test data’) and
expected to map these new data to one of the groups
of interest. In our case, the output categories would be
either ADp or ADm. The effectiveness of each configu-

1In the vector representation the word types are used as labels
in order to indicate the type to which each value belongs. That is
needed as types with zero value are omitted. They are not used as
features in the classification process.
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ration of the classification algorithm is measured using
a 3-fold cross validation procedure (described below).

Naive bayes classifier
The Naı̈ve Bayes (NB) classifier is an implemen-

tation of Bayes’ theorem. The term ‘naı̈ve’ derives
from the fact that the classifier assumes the features
it uses to classify texts to be conditionally independent
given the category. Although the assumption of inde-
pendence is rarely true, NB is reported to perform well
even on complex tasks where it is clear that the strong
independence assumptions are false [31].

The NB classifier learns estimates for the category-
conditional probabilities and priors for each group
(ADp, ADm) from the training data. At the classifica-
tion stage, Bayes theorem is used to assign a feature
vector representing a transcript to the class that max-
imizes the posterior probability (i.e., the more likely
class) [31]. NB classifiers have a number of variants,
which calculate the probability of a transcript belong-
ing to a class in subtly different ways; among the most
popular NB variants are the Naı̈ve Bayes Gaussian
(NBG) and the Naı̈ve Bayes Multinomial (NBM) [32].
In NBG, the value of the probability that each transcript
belongs to a group is obtained under the assumption
that the features are normally distributed across the
transcripts in the corpus. In NBM, a multinomial distri-
bution is assumed for each of the features representing a
transcript. In the current work we made use of NBG, as
it was found to outperform NBM in the classification of
transcripts from patients with semantic dementia [15].

Evaluation procedures

To evaluate both the feature selection and classi-
fication procedures, we adopted a three-fold cross-
validation approach as follows. In each classification
task, the transcripts used were randomly divided into
three equally-sized, randomly selected, subsets. Two
subsetswereused toselect thefeatures,whichwere then
appliedonthesametwosubsetstotraintheclassification
algorithm.Theremainingsubsetwasusedfortestingthe
classification algorithm, based on the selected features.
This process was repeated three times, using differently
constituted test subsets at each iteration.

RESULTS

Feature extraction

An example output of feature extraction is shown in
Table 3, which lists the lexical features extracted from

the ADm versus ADp data set. Features are shown along
with their mean values for each group of transcripts.
In order to keep the list within manageable limits, we
selected from the lexical features category those items
whose frequency unigrams were associated with an
average frequency greater than 0.1 in either of the two
groups under comparison.

Evaluation of feature selection

The CFS feature selection method was tested under
the three distinct feature representations (binary uni-
grams, frequency unigrams, and combined syntactic
complexity and textual variation features)2.

All features belonged to the categories detailed in
Table 2.

Feature selection output
The output of each feature selection task comprises

three selected feature subsets, one from each iteration
of the evaluation procedure, which are tested against
the remaining data subsets at each iteration. Table 4
shows the selected features for each feature selection
task, as well as the mean values of the normalized fre-
quency and standard deviation of each selected feature
for each group of transcripts.

In the case of the combined syntactic complexity and
textual variation features representation, none of the
features were selected from the feature selection task,
and consequently in Table 4 we report the differences
in mean values from the whole set, across the three
iterations.

Features selected from the pure lexical category
Table 4 shows three feature subsets ranging from

nine to twelve words, corresponding to the binary
and frequency feature representation. Each feature is
accompanied by its mean value and standard deviation
over the full data set.

In coarse-grained terms, the selected binary dis-
criminative feature set indicates the words that have
a tendency to appear in one group, while the selected
word frequency features indicate the words that appear
more frequently in one group over the other. The dif-
ferences in mean values of the selected binary and
frequency unigrams show that in most of the cases a
selected word feature either appears only in the ADp

2Preliminary experimentation with combined feature sets (i.e.,
frequency unigrams feature set together with the combined syntactic
complexity and textual feature set) showed poor discrimination, pre-
sumably due to the introduction of noise, so the results are reported
for individual feature sets.
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Table 3
Word features (i.e., unigrams) extracted from the ADp versus ADm data set of transcripts assigned with their mean frequency of appearance in

the transcripts of each group (i.e., in ADp versus ADm)

Frequency unigrams Mean frequency of appearance Frequency unigrams Mean frequency of appearance
extracted from the extracted from the
ADp versus ADm ADp versus ADm
language data set language data set

ADp ADm ADp ADm

they 0.33 0.33 catch 0.06 0.00
not 0.33 0.22 look 0.17 0.11
now 0.11 0.06 will 0.11 0.00
drop 0.11 0.00 while 0.22 0.00
biscuits 0.16 0.06 apron 0.11 0.00
side 0.11 0.11 is 2.44 1.72
mean 0.05 0.11 it 1.11 0.94
doing 0.38 0.44 in 1.00 1.00
house 0.11 0.00 things 0.11 0.17
out 0.89 0.39 plates 0.11 0.17
washed 0.11 0.06 hand 0.50 0.11
looking 0.22 0.00 off 0.50 0.39
stupid 0.00 0.11 i 0.56 1.28
got 0.78 0.44 no 0.00 0.17
quite 0.17 0.06 well 0.61 0.72
put 0.11 0.11 mother 0.39 0.56
her 0.94 0.39 the 7.06 6.28
could 0.11 0.00 left 0.11 0.11
running 0.33 0.28 just 0.17 0.11
thing 0.17 0.11 when 0.17 0.00
think 0.28 0.17 cakes 0.44 0.33
one 0.56 0.17 yes 0.22 0.67
feet 0.17 0.00 cut 0.00 0.11
another 0.11 0.00 thinking 0.17 0.00
open 0.22 0.06 has 0.33 0.11
little 0.83 0.83 big 0.00 0.11
top 0.17 0.06 gonna 0.11 0.17
too 0.06 0.28 know 0.06 0.22
really 0.00 0.11 presume 0.00 0.17
curtains 0.17 0.11 bit 0.00 0.22
that 0.89 1.28 lady 0.44 0.17
shelf 0.22 0.00 knock 0.11 0.00
huh 0.00 0.11 like 0.22 0.17
tree 0.11 0.00 lost 0.00 0.11
and 4.44 4.17 because 0.22 0.11
say 0.00 0.17 some 0.17 0.06
have 0.33 0.17 back 0.33 0.17
she 1.56 1.44 standing 0.50 0.00
dishes 0.17 0.28 dear 0.11 0.06
take 0.11 0.00 saucer 0.00 0.11
which 0.72 0.17 for 0.39 0.17
though 0.11 0.06 asking 0.11 0.11
who 0.06 0.17 be 0.44 0.56
had 0.00 0.11 reaching 0.17 0.06
taps 0.11 0.22 by 0.22 0.06
busy 0.06 0.00 on 1.39 0.72
state 0.00 0.06 sister 0.28 0.06
should 0.06 0.17 ok 0.00 0.11
only 0.06 0.00 getting 0.56 0.22
going 0.28 0.22 of 1.56 0.50
pretty 0.06 0.00 or 0.11 0.39
do 0.11 0.11 into 0.11 0.06
his 0.61 0.28 socks 0.11 0.00
topple 0.11 0.00 right 0.00 0.22
get 0.33 0.17 there 1.06 1.28
drawn 0.06 0.11 was 1.06 1.28
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Table 3
(Continued)

Frequency unigrams Mean frequency of appearance Frequency unigrams Mean frequency of appearance
extracted from the extracted from the
ADp versus ADm ADp versus ADm
language data set language data set

ADp ADm ADp ADm

him 0.06 0.17 head 0.11 0.00
overflowing 0.44 0.11 himself 0.00 0.11
puddle 0.11 0.00 but 0.11 0.06
we 0.06 0.11 wiping 0.28 0.11
up 1.11 1.61 trying 0.11 0.11
see 0.11 0.28 with 0.44 0.28
are 0.37 0.59 he 0.28 0.11
said 0.06 0.17 whether 1.56 1.44
away 0.00 0.11 um 0.11 0.00
outside 0.17 0.06 cake 1.28 0.83
mum 0.00 0.11 an 0.33 0.22
probably 0.22 0.06 as 0.11 0.00
kitchen 0.22 0.28 at 0.22 0.17
taking 0.17 0.11 girl 0.11 0.06
against 0.06 0.00 again 0.61 1.00
forgotten 0.06 0.06 floor 0.11 0.00
presumably 0.11 0.17 tip 0.22 0.22
fallen 0.11 0.06 tin 0.11 0.00
been 0.28 0.06 you 0.22 0.17
wet 0.11 0.00 er 0.06 0.33
wise 0.06 0.06 helping 2.17 0.78
child 0.11 0.00 happening 0.00 0.17
plate 0.28 0.22 ooh 0.17 0.00
minute 0.00 0.11 box 0.00 0.11
so 0.05 0.27 window 0.11 0.00
mm 0.11 0.00 roof 0.50 0.11

transcripts, or if it appears in both groups, it has a
higher frequency in the ADp transcripts. This shows
that the differences between the two groups, as far as
the selected lexical features are concerned, are both
quantitative and qualitative: i.e., that the two vocabu-
laries contain different words, and that common words
occur in different frequencies.

The majority of the selected binary and frequency
features are content words (e.g., ‘garden’, ‘hand’, ‘sis-
ter’, ‘feet’). Of these content words, those referring to
concrete objects or events appear either exclusively, or
with greater frequency, in the ADp vocabulary. In con-
trast, the remaining word types, which are either verbal
or adverbial forms (e.g., standing, right), refer to more
abstract concepts and are not exclusive to one group or
the other. It is notable that verb types included in the
binary and frequency unigram subsets are morphologi-
cally complex (i.e., ‘standing’, ‘getting’, ‘looking’) and
that they occur in higher frequency in the ADp group.

Features selected from the syntactic complexity
and textual categories

No specific features were selected during the feature
selection step, so all the features were used. As CFS

selects the features that are uncorrelated with other fea-
tures, this was to be expected from the basis on which
they are calculated (see above, ‘Feature extraction’).
As an example, a text that has a lot of repetition will
consequently have low entropy and compression ratio.
Additionally, the higher the repetition, the lower the
entropy and the compression ratio, and vice versa.

Table 4, shows all the syntactic complexity and
textual features accompanied by the mean value and
standard deviation for each group. It is evident that
the mean values of the majority of the syntactic com-
plexity measures employed are higher in the ADp
transcripts. The large number of clauses per sentence,
the large number of verb phrases per T-unit, and the
increased length of sentences, which characterize the
ADp group indicate a more complex syntax. Complex
syntax indicates preservation of expressive ability and
less impaired language function. For instance, the fol-
lowing two passages (the first produced by an ADp
patient, and the second by an ADm) are examples of
low and high syntactic complexity, respectively:

(i) ‘’er it’s the boy is um wanting to pinch some
biscuits from a top shelf to do so he’s standing
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on a stool which is not a very stable thing to
stand on however the girl has got her wits about
her because she’s got her hand ready to catch

the biscuits when the boy has got hold of them
providing that he doesn’t land on his back and
er knock himself out in the meantime the er

Table 4
Lexical features selected by the CFS, and (unselected) syntactic complexity and textual features for the

ADp versus ADm groups’ distinction for each of the 3 iterations in each feature selection task.
Each feature is accompanied by the mean and standard deviation over the tested

transcripts belonging to each group

Features category Selected features ADp (Mean/SD) ADm (Mean/SD)

Binary Unigrams
1st iteration pinching 0.00 (0.16) 0.25 (0.43)

window 0.42 (0.49) 0.00 (0.16)
looking 0.25 (0.43) 0.00 (0.16)

one 0.50 (0.5) 0.00 (0.16)
up 0.67 (0.47) 1.00 (0.16)

when 0.25 (0.43) 0.00 (0.16)
has 0.33 (0.47) 0.00 (0.17)
bit 0.00 (0.16) 0.25 (0.43)

standing 0.50 (0.5) 0.00 (0.16)
for 0.50 (0.5) 0.08 (0.27)
you 0.00 (0.17) 0.25 (0.43)

2nd iteration garden 0.25 (0.43) 0.00 (0.17)
so 0.00 (0.17) 0.33 (0.47)

feet 0.25 (0.43) 0.00 (0.17)
is 1.00 (0.17) 0.75 (0.43)

hand 0.42 (0.49) 0.00 (0.17)
know 0.00 (0.17) 0.25 (0.43)

standing 0.58 (0.49) 0.00 (0.17)
3rd iteration pinching 0.00 (0.17) 0.25 (0.43)

drying 0.50 (0.5) 0.08 (0.27)
too 0.00 (0.17) 0.33 (0.47)
no 0.00 (0.17) 0.25 (0.43)
bit 0.00 (0.17) 0.25 (0.43)

standing 0.41 (0.49) 0.00 (0.17)
sister 0.33 (0.47) 0.00 (0.17)
right 0.00 (0.17) 0.25 (0.43)

er 0.83 (0.37) 0.25 (0.43)
Frequency Unigrams
1st iteration garden 0.25 (0.43) 0.00 (0.17)

so 0.00 (0.17) 0.42 (0.64)
out 1.00 (0.81) 0.33 (0.47)
feet 0.25 (0.43) 0.00 (0.17)
hand 0.58 (0.76) 0.00 (0.17)
know 0.00 (0.17) 0.25 (0.43)

standing 0.67 (0.62) 0.00 (0.17)
getting 0.75 (1.08) 0.25 (0.43)

of 1.90 (1.8) 0.40 (0.6)
2nd iteration to 2.43 (1.99) 1.31 (1.33)

pinching 0.00 (0.17) 0.25 (0.43)
too 0.00 (0.17) 0.33 (0.47)
no 0.00 (0.17) 0.25 (0.43)
bit 0.00 (0.17) 0.25 (0.43)

standing 0.50 (0.64) 0.00 (0.17)
sister 0.33 (0.47) 0.00 (0.17)

Er 2.50 (1.80) 0.60
3rd iteration very 0.38 (0.62) 0.00 (0.17)

two 0.30 (0.46) 0.00 (0.17)
pinching 0.00 (0.17) 0.23 (0.42)

when 0.23 (0.42) 0.00 (0.17)
bit 0.00 (0.17) 0.23 (0.42)

standing 0.46 (0.50) 0.00 (0.17)
you 0.00 (0.17) 0.38 (0.62)
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Table 4
(Continued)

Features category Selected features ADp (Mean/SD) ADm (Mean/SD)

Combined Syntactic
Complexity and
Textual Features

Average Values across
the 3 iterations

MLC (Mean Length of Clause) 7.90 (2.83) 6.39 (1.57)

MLS (Mean Length of Sentence) 85.65 (42.93) 52.12 (28.52)
MLT (Mean Length of T-Unit) 65.91 (44.57) 47.46 (29.77)
C/S (Sentence complexity ratio) 11.23 (5.04) 8.74 (4.49)
C/T (T-unit complexity ratio) 8.50 (4.04) 7.70 (4.7)
CT/T (Complex T-unit ratio) 0.77 (0.32) 0.71 (0.33)
DC/C (Dependent clause ratio) 0.54 (0.23) 0.43 (0.16)
DC/T (Dependent clauses per T-unit) 5.29 (3.5) 3.65 (2.5)
CP/C (Coordinate phrases per clause) 0.16 (0.14) 0.15 (0.17)
CP/T (Coordinate phrases per T-unit) 1.11 (0.6) 1.13 (0.5)
T/S (Sentence coordination ratio) 1.37 (0.7) 1.24 (0.5)
CN/C (Complex nominals per clause) 0.78 (0.30) 0.64 (0.22)
CN/T (Complex nominals per T-unit) 6.83 (5.5) 4.87 (3.31)
VP/T (Verb phrases per T-unit) 10.25 (4.69) 8.1 (5.1)
Honore R (R) 2085.12 (488.82) 1784.02 (540.50)
Mean of hapaxlegomena 8.83 (0.55) 8.47 (0.99)
Mean of pair-hapaxlegomena 9.94 (0.11) 9.83 (0.35)
Mean of Simpson’s diversity index (D) 0.87 (0.00) 0.88 (0.01)
Dislegomena over Vocabulary 0.13 (0.04) 0.16 (0.05)
Shannon Entropy Mean (H) 0.990 (0.0) 0.99 (0.01)
Compression Ratio (CR) 0.59 (0.05) 0.56 (0.05)

presumably the mother is getting on with the
washing up”

(ii) “looks as if the boy’s pinching cakes and the
girl’s washing up apparently oh there’s a flood
isn’t there yes and the stool is tipping up”

The first example consists of a single, long sentence
with numerous dependent clauses (introduced by the
words in bold type). The frequent use of verb phrases
indicates a complex syntax. By contrast the second
sentence comprises a series coordinate phrases (i.e.,
phrases dominating a coordinating conjunction (‘and’,
‘but’, ‘for’, ‘or’, ‘nor’, ‘yet’, and ‘so’)). Increased
complexity at the clausal level indicates greater elo-
quence, as the correct use of subordinate clauses is
associated with greater linguistic ability, while, the
higher phrasal density—such as the greater amount
of coordination—entails a simpler mode of expression
and reduced eloquence.

Moreover, the mean values of textual features imply
that the ADp vocabulary is more varied: values of
Honoré’s R and rates of hapax legomena and pair-
hapax legomena over segments of equal size are all
higher in the ADp transcripts. From the mean value of
the dis legomena over vocabulary, it appears that the
ADp vocabulary exhibits a smaller number of words
that are used more than once, yielding a less redun-

dant vocabulary. The slightly higher value of Shannon
entropy (H) in the ADp transcripts has the same impli-
cation. On the other hand, the lower mean value of
compression ratio, which characterizes the ADm tran-
scripts, indicates that the latter are somewhat more
repetitive [6].

Machine learning classification results

The ML classifier was also evaluated following the
three-fold cross validation approach described above.
In the current section, we present accuracy results
for five ML classification tasks performed for the
ADp/ADm distinction: three classification tasks based
on the features selected as described above, and two
further classification tasks using the entire frequency
and binary feature sets.

Each classification task consisted of three sub-
experiments, corresponding to the three test sets
described above. In the first three tasks, these sub-
experiments exploited the feature subsets from the
three feature representations summarized in Table 4,
with three separate feature subsets forming the input
vectors for the NB classifier. The features subsets
for the remaining two classification tasks were taken
from the entire frequency and binary feature sets. The
success of each sub-experiment is determined by the
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Table 5
Confusion matrices and accuracy for Naı̈ve Bayes (NB) using various feature sets for the distinction between the ADp and ADm groups. Accuracy

comparisons (error threshold 5%), ∗(w/FS): With feature selection, ∗(w/o FS): Without feature selection, NB: Naı̈ve bayes

NB∗ with NB with NB with NB with NB with Baseline
binary binary frequency frequency combined

unigrams unigrams unigrams unigrams syntactic
(w/FS)∗ (w/o FS)∗ (w/FS) (w/o FS) complexity &

textual features
ADm ADp ADm ADp ADm ADp ADm ADp ADm ADp ADm ADp

ADm 13 5 11 7 13 5 10 8 13 5 18 0
ADp 7 11 8 10 4 14 6 12 8 10 18 0
Accuracy 66.67% 58.33% 75% 61.11% 63.89% 50%

1) NB with Binary Unigrams (w/FS), NB with Binary Unigrams (w/o FS) VS Baseline (p-values: 0.01, 0.02), NB with Frequency Unigrams
(w/FS), NB with Frequency Unigrams (w/o FS) VS Baseline (p-values: 0.001, 0.02), NB Combined Syntactic Complexity & Textual Features
VS Baseline: p-value: 0.01. 2) NB with Binary Unigrams (w/FS) VS NB with Binary Unigrams (w/o FS): p-value: 0.02, NB with Frequency
Unigrams (w/FS) VS NB with Frequency Unigrams (w/o FS), p-value: 0,03. 3) NB with Frequency Unigrams (w/FS) VS NB with Binary
Unigrams (w/FS), NB with Binary Unigrams (w/o FS), NB with Frequency Unigrams (w/o FS), NB Combined Syntactic Complexity & Textual
Features: (p-values: 0.02, 0.005, 0,01, 0.02).

classifier’s accuracy, which is defined as the percent-
age of correctly classified transcripts. This outcome
was compared statistically with a baseline condition in
which all transcripts were assigned to one of the two
classes at random. Since the number of samples was
equal (18 transcripts) for each category, the baseline
accuracy performance was considered as 50%. For the
binary and frequency feature sets, classification per-
formance with and without feature selection were also
compared. Finally, comparison of the accuracy of the
classifier across feature sets additionally allowed the
relative effectiveness of each feature set to be com-
pared. In all comparisons statistical significance was
tested using paired t-tests against a 5% error thresh-
old. Table 5 shows the confusion matrices and average
accuracy of the classifier derived from the three sub-
experiments for each classification task, along with
p-values for the comparisons of interest.

In all the classification tasks, NB produced a sig-
nificantly higher level of accuracy than the baseline
condition. For both frequency and binary feature sets,
the classification tasks using selected features outper-
formed the tasks without feature selection. The results
also indicate that the selected frequency feature set was
more effective in distinguishing the two categories than
the selected binary feature set, while the equivalent
tasks without feature selection showed similar levels
of accuracy.

The configuration with the highest accuracy (75%)
was the frequency feature set after feature selection,
suggesting that the contrast in the language of these
groups is to a large extent due differences in the fre-
quencies of certain words. Moreover, the significantly
superior performances of combined feature set com-
pared to baseline, supports the intuition that differences

in these groups can also be located at the syntactic
complexity and lexical variation levels.

DISCUSSION

Longitudinal cohort studies of patients with neu-
rodegenerative conditions have given rise to a number
of important insights linking cognitive performance
during life with neuropathological appearances at post-
mortem. In the current study we aimed to detect the
extent to which computational methods could accu-
rately detect the most important sources of variation in
connected language samples produced by patients with
two distinct species of neuropathology, namely, those
with changes of AD alone (‘pure AD’, referred to in this
study as ADp) and those with a combination of AD and
vascular pathology (‘mixed AD’, referred to here as
ADm). We also aimed to determine the extent to which
such automated methods could accurately distinguish
between the two groups. While previous studies have
found differences based on a combination of manually
and automatically derived features of texts, and applied
a ML approach to clear cut clinical distinctions (such
as that those between fluent and non-fluent progressive
aphasia [13]), the present study used only features that
could be extracted automatically from digitized text
samples, and focused on a more subtle (though no less
clinically important) distinction.

Experimental results clearly supported the idea that
the use of features ranging from purely lexical to
more complex syntactic and textual, combined with a
ML classification approach, could successfully distin-
guish between the two groups. The results also showed
how the automatically extracted feature subsets were
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distributed between the two patient groups. Concretely,
information about the presence or absence of lex-
ical features and the frequency of words appeared
to be a valuable indicator of the vocabulary specific
differences between the two groups. Classification
results also suggested that a combination of syntac-
tic complexity, information and textual variation was
important to the same clinical distinction. These find-
ings are consistent with earlier clinical observations of
patients with ADp and ADm in the language domain,
with reference to both the syntactic and lexical flu-
ency levels [4, 5]. Finally, feature selection suggested
that characteristics defined using an information theory
approach is also important to this clinical distinction.
These issues will be discussed in more detail in the
following sections.

Feature selection

The selected binary and frequency feature subsets
selected proved effective at distinguishing between
the ADp versus ADm subsets when integrated with
the classification tasks, while examination of the
selected words in both the binary and frequency subsets
(Table 4) yielded insights into the idiosyncrasies of the
language of the two groups. Despite the fact that the
selected word features in both subsets were few in num-
ber, they were selected from a larger total (529 words)
and can be considered to be representative. The selec-
tions suggest that a range of content words contribute
to the difference between the groups, though the mere
presence (or absence) or number of content words in
isolation is not adequate to the task of accurate classifi-
cation. The power of CFS is that it indicates a minimum
subset of features whose correlation with the groups
under investigation makes them capable of discrimi-
nating between the groups. This cannot be achieved
by manually performed descriptive approaches.

With respect to the textual and syntactic complexity
features, the feature selection algorithm did not select
any features so all the features were used. There are
two possible explanations for this result: as the first is
that the features reflect well established metrics whose
values correlate in a predictable fashion (more repeti-
tion leading to lower entropy and higher compression
ratio), and features that are predictive of one another (or
most of the others in that case) are excluded from the
features selected by CFS. An alternative explanation
is that none of the features was highly correlated with
the class, and are therefore not very important in distin-
guishing between the groups. Although intuition would
seem to favor the former explanation, we acknowl-

edge that formal comparison of CFS with other feature
selection methods (which is beyond the scope of the
present study) would be needed to exclude the latter.

The study introduced a series of features derived
from information theory. When used in conjunction
with syntactic complexity and textual features in the
raw set, these features contributed to an efficient dif-
ferentiation of the two groups. The differences in mean
values between the two groups of the full feature sets
from the syntactic complexity and textual domains
(as shown in Table 4) indicate that in texts with a
higher degree of syntactic complexity with numer-
ous subordinate clauses (as in the case of the ADp
transcripts), less repetition is expected since the intro-
duction of new lexical items is more probable in such
“rich” structures. On the other hand our findings veri-
fied the intuitive expectation of a reduction in syntactic
complexity, especially in the ADm group, and are in
agreement with previous attempts at investigating the
effects of AD [33] on syntactic complexity. Similarly,
the higher entropy in the ADp group accords with
the more varied vocabulary observed for this group
[3], while verifying that increased lexical richness is
largely associated with higher entropy [28], and thus
with a greater degree of randomness and uncertainty.
This association reveals an analogy between lexical
richness and entropy, which is explained by consider-
ing that the bigger number of different words in a text,
the more difficult to predict the occurrence of a given
word.

Machine learning classification

The practical applications of ML-based text clas-
sification include authorship attribution, in which a
text of unknown origin is attributed to one of a set
of candidate authors, a task in which ML has been
shown to perform as accurately as human experts [34].
The potential of ML to classify the language of dif-
ferent clinical populations has been less extensively
investigated, though the task is clearly an analogous
one. In the present study, a ML classification approach
exploiting a selected set of words with either pres-
ence/absence or frequency information, yielded good
diagnostic accuracies of 67% and 75% respectively,
which was superior to that of a combination of textual
and syntactic complexity features. By implementing a
threefold cross validation approach, we eliminated the
possibility that the classifier over-fitted on the language
idiosyncrasies of the training set, causing poor general-
izability to unseen data. Instead, features were selected
only from the training set (2/3 of the dataset), which
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was different at each iteration, and were always tested
through the application of the classification method on
the test set (1/3 of the dataset).

The accuracy, as a result of the threefold cross val-
idation across all the classification tasks performed,
means that the classifier’s performance was high in
all the threefold classification tasks comprising the
cross-validation approach. It is also important to note,
however, that high accuracy can also be seen as a result
of the effective combination of the appropriate ML
algorithm with the most appropriate feature subset.
The reason behind the choice of NB was its previ-
ously demonstrated good fit for text classification tasks
[35]. Moreover, the NB classifier has been reported to
perform better when it deals with non-redundant fea-
tures [36]. The rationale behind the choice to employ a
reduced set of features, was that it also helps to reduce
the learning and running times of the classifiers—an
important advantage when working with large data
sets. The CFS algorithm proved, most of the time,
to be an effective way of achieving such a feature
reduction for the present purposes. The performance
of the classifier, when integrating the combined syn-
tactic complexity and textual feature sets achieved a
significantly higher performance than that of the base-
line condition. This argues in favor of the existence
of systematic differences in syntactic complexity and
lexical variation between the two groups. The accu-
racy achieved by ML classification of the distinctions
between the two groups was indicated by its consistent
outperforming of the baseline condition, but also by
the levels of classification accuracy achieved (as high
as 75%).

In summary, these findings, using a ML method
for narrative transcript analysis, illustrated an impor-
tant set of differences in the language features of
postmortem confirmed ADm and ADp groups. They
verified our initial hypothesis that the cognitive deficits
of ADm are greater than in ADp, and evidenced by a
greater deficit for the ADm in both lexical variety and
syntactic complexity in spoken language.
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