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a b s t r a c t

Advances in automatic text classification have been necessitated by the rapid increase in

the availability of digital documents. Machine learning (ML) algorithms can ‘learn’ from

data: for instance a ML system can be trained on a set of features derived fromwritten texts

belonging to known categories, and learn to distinguish between them. Such a trained

system can then be used to classify unseen texts. In this paper, we explore the potential of

the technique to classify transcribed speech samples along clinical dimensions, using

vocabulary data alone. We report the accuracy with which two related ML algorithms

[naive Bayes Gaussian (NBG) and naive Bayes multinomial (NBM)] categorized picture de-

scriptions produced by: 32 semantic dementia (SD) patients versus 10 healthy, age-

matched controls; and SD patients with left- (n ¼ 21) versus right-predominant (n ¼ 11)

patterns of temporal lobe atrophy. We used information gain (IG) to identify the vocabulary

features that were most informative to each of these two distinctions.

In the SD versus control classification task, both algorithms achieved accuracies of

greater than 90%. In the right- versus left-temporal lobe predominant classification, NBM

achieved a high level of accuracy (88%), but this was achieved by both NBM and NBG when

the features used in the training set were restricted to those with high values of IG. The

most informative features for the patient versus control task were low frequency content

words, generic terms and components of metanarrative statements. For the right versus

left task the number of informative lexical features was too small to support any specific

inferences. An enriched feature set, including values derived from Quantitative Production

Analysis (QPA) may shed further light on this little understood distinction.

ª 2013 Elsevier Ltd. All rights reserved.
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of pre-classified documents. The many practical applications

of ML-based text classification include authorship attribution,

in which a text of unknown origin is attributed to one of a set

of candidate authors. In some instances the approach has

achieved accuracy comparable to that of human experts

(Sebastiani, 2002). The potential of ML in the classification of

language samples generated by different clinical populations

has been less extensively investigated, though the problem of

distinguishing among samples obtained from patients with

different clinical syndromes is clearly analogous to that of

authorship attribution.

Semantic dementia (SD) is a progressive neurodegenera-

tive syndrome characterized by the relatively isolated degra-

dation of the semantic component of long term declarative

memory (Hodges et al., 1992; Snowden et al., 1992; Tulving,

1972; Warrington, 1975). Disruption of a system so central to

language inevitably impacts on the production of discourse,

giving rise to a pattern of spontaneous speech that is fluent,

phonologically and grammatically correct, andmakes use of a

high frequency, often generic vocabulary (e.g., ‘thing’, ‘bit’ or

‘stuff’) (Bird and Lambon Ralph, 2000; Hodges et al., 1992;

Meteyard and Patterson, 2009).

Studies of magnetic resonance (MR) imaging of the brains

of patients with SD, at individual and group level, have

consistently identified bilateral, asymmetric temporal lobe

atrophy (Galton et al., 2001; Garrard and Hodges, 2000; Gorno-

Tempini et al., 2004; Mummery et al., 2000) in which the left

hemisphere is often (though not always see, e.g., Evans et al.,

1995 and Thompson et al., 2003) themore profoundly affected.

Comparisons between the subgroup with predominantly left-

and predominantly right-sided atrophy (referred to hence-

forth as ‘L > R’ and ‘R > L’ respectively) have identified a

number of features that appear to characterize the latter.

These differences have largely emphasized the social and

emotional impairment that frequently accompanies SD, the

absence of insight (Chan et al., 2009; Perry et al., 2001;

Thompson et al., 2003), and differences in the type of se-

mantic knowledge disrupted (person specific rather than

general) (Evans et al., 1995; Gentileschi et al., 2001; Josephs

et al., 2008; Joubert et al., 2006).

In a recent study, Wilson et al. (2010) used Quantitative

Production Analysis (QPA) (Saffran et al., 1989) to analyse

transcripts of discourse samples obtained from patients with

primary progressive aphasia (PPA) (Gorno-Tempini et al.,

2011), including 25 with a diagnosis of SD. The SD tran-

scripts differed most markedly from those of controls and

other PPA syndromes on a lexical dimension, with striking

differences identified in the increased used of pronouns,

verbs, and high frequency nouns. Deviations from normal

performance on selected aspects of syntactic structure and

complexity were least marked in the SD subtype.

Studies examining the differential effects of L> R and R> L

temporal lobe atrophy on language production are fewer in

number: using measures derived from voxel based

morphometry (VBM) (Good et al., 2001), Mummery et al. (2000)

found that measures of semantic performance selectively

correlated with atrophy in left-temporal lobe structures;

Lambon Ralph et al. (2001) found that, in R > L cases, anomia

and single word comprehension tended to deteriorate pari

passu, while a L > R group showed disproportionately severe
anomia. The same study also identified differences in the

types of error made on a naming test by the two patient

groups: the responses of L > R patients were more likely to be

circumlocutory or omitted altogether, while patients in the

R > L group committed more coordinate errors (such as pro-

duction of ‘goat’ in response to a picture of a horse). To date,

however, there have been no systematic comparisons of the

effects of R > L versus L > R temporal lobe atrophy on the

production of connected discourse in SD.

Garrard and Forsyth (2010) hypothesized that the language

of SD patients and controls would be distinguishable on the

basis of the lexical frequency data from transcripts of con-

nected speech. They used principal components analysis

(PCA) to identify two latent variables in a high dimensional

‘discourse space’, the values of which distinguished between

connected speech samples obtained from patients with SD

and those produced by controls. The study found that the

vocabulary used by SD patients differed from those of controls

along at least two major dimensions. The region of this

two-dimensional ‘discourse space’ occupied by the control

transcripts was characterized by the use of specific content-

bearing terms and the deployment of a variety of grammatical

function words. In contrast, the patient transcripts were

associated with values correlating with use of the pronouns

‘HE’ and ‘SHE’, generic terms such as ‘SOMETHING’, the deictic

words ‘HERE’ and ‘THERE’, the light verb ‘DOING’, and com-

ponents of the phrase ‘I DO NOT KNOW’. The two dimensions

therefore captured not only the lexical-semantic deficit, but

also the syntactically simplified character of SD discourse that

has emerged from a number of manual analyses (Benedet and

Patterson, 2006; Patterson and Macdonald, 2006).

In the current paper, we broaden this methodological

approach by applying and comparing the performance of two

(Bayesian) ML methods, in the classification of spoken

discourse samples produced by SD patients and controls. In

addition, we apply the same methods to the problem of dis-

tinguishing between speech samples produced by SD patients

with L > R and R > L patterns of temporal lobe atrophy.
2. Materials and methods

The data for the study consisted of transcribed samples of

connected speech, and structural MR imaging obtained from

32 patients meeting diagnostic and imaging criteria for SD

(Gorno-Tempini et al., 2011; Hodges et al., 1992) and from 10

age matched, cognitively normal controls (NC). All partici-

pants were fluent English speakers, recruited through the

Memory and Aging Center at UCSF after giving written

informed consent. The study was approved by the institu-

tional review board.

Within the SD group were 21 individuals classified on

clinical and imaging grounds (see Section 2.2) as showing a

L > R pattern of temporal lobe asymmetry, and 11 with the

R > L pattern. The demographic characteristics of the three

participant groups, as well as the performance of the SD

groups on standardized tests of semantic memory, are sum-

marized in Table 1. SD patients with a L > R pattern showed

significantly greater impairment on naming and single word

comprehension than the R > L subgroup, but the two SD

http://dx.doi.org/10.1016/j.cortex.2013.05.008
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Table 1 e Demographic characteristics of the participant groups and standardized neuropsychological text scores obtained
by the two groups of SD patients.

SD L > R (n ¼ 21) SD R > L (n ¼ 11) Controls (n ¼ 10)

Demographic characteristics Mean [sd] age 62 [5.9] 64 [5.9] 68 [5.9]

M:F 11:10 5:6 5:5

n L-handed 3 l 0

Neuropsychological test (mean [sd]) BNT 3.0 [2.8] 7.6 [4.4]b n/a

PPVT 6.1 [3.5] 9.7 [4.4]b n/a

Fluencya 8.9 [.79] 9.4 [.81] n/a

Repetition (%)a 89.2 [10.7] 95.6 [4.3] n/a

PPTp (%) 39.1 [10.2] 42.8 [7.3] n/a

BNT ¼ Boston naming test; PPVT ¼ Peabody Picture Vocabulary Test; PPTp ¼ Pyramids and Palm Trees (picture condition).

a Subtests of the Western Aphasia Battery (Kertesz, 1982).

b p < .05 for the comparison between the two SD groups.
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subgroups performed at equivalently low levels on tests of

verbal fluency, repetition and visual associative semantics.

There were no differences between the mean ages or gender

distributions of the two patient subgroups, nor between the

NC and SD groups.

2.1. Connected speech samples

Speech and language profiles of all participants had previ-

ously been examined using the Western Aphasia Battery

(WAB) (Kertesz, 1982), which includes the elicitation of a

sample of connected speech using the picnic picture

description test. The examiner instructs participants to ‘have

a look at the picture, tell me what you see, and try to talk in

sentences’. All test sessions were videotaped, and the audio

components of these recordings were transcribed using

standard English orthography.

Although the task is designed to elicit a monologue, in

practice the interviewer is often heard supplying comments,

prompts, or back-channel signals such as ‘mmhmm’ or ‘yes’

(Yngve, 1970), producing a dialogue that may at times deviate

from the narrative of interest. Participants also produce

paralinguistic elements such as ‘um’ and ‘er’ (generically

coded as ‘um’), exclamations such as ‘well’, or ‘oh yeah’,

metanarrative elements (e.g., ‘I can’t remember the name’),

inaudible words, and false starts. The transcriptions prepared

for the present study incorporated these paralinguistic ele-

ments, but none of the interviewer’s utterances.

2.2. MR imaging

Volumetric T1 images were acquired from all patients and

controls on a 1.5T Siemens Magnetom VISION system equip-

ped with a standard quadrature head coil, using a magneti-

zation prepared rapid gradient echo (MPRAGE) sequence (164

coronal slices; slice thickness ¼ 1.5 mm; FOV ¼ 256 mm; ma-

trix 256 � 256; voxel size 1.0 � q.5 � 1.0; TR ¼ 10 msec;

TE ¼ 4 mm; flip angle ¼ 15�). All images were compatible with

the clinical diagnosis of SD: all showed focal atrophy of the

inferolateral and polar aspect of one or both temporal lobes

(Mummery et al., 2000). Images showing bilateral atrophy

were further scrutinized to look for the presence and direction

(R> L vs L> R) of any asymmetry. The classificationwas based

on a consensus of senior clinicians (including MLG-T and BM),
who took into account clinical information (such as the

presence of greater deficits for famous people and social

concepts, and reduced empathy) as well as structural imaging

appearances.
3. Data analysis

All experiments were conducted using the Waikato Environ-

ment for Knowledge Analysis (WEKA) http://www.cs.waikato.

ac.nz/ml/weka suite of ML software (Hall et al., 2009). Classi-

fiers were trained using frequency unigrams (i.e., word types

and their frequencies of occurrence in the groups of texts

(corpora) to be classified). Transcripts were represented under

the ‘bag-of-words’ assumption (i.e., absent any information

relating to word order), which has been found to produce a

robust solution in text classification by capturing word

content- and frequency-specific differences that are relevant

to the categories under investigation.

Each transcript was represented by a feature vector of the

form:

<w1 , x1 , . . . , wm, xm > where w1,...,wm are the word types

found in the set of transcribed texts (corpus) examined and

x1...xm denote the frequencies (i.e., the number of times the

corresponding words occurred in a transcript). Each feature

vector representation of a transcript is assigned to one of the

categories, which is denoted by cn. It should be noted that: (i)

word types are derived from actual words rather than

lemmatized forms; and (ii) the frequency assigned to each

word type reflects its raw (rather than normalized) frequency

of occurrence in each transcript.

For the first classification problem cn took the values SD or

NC, and for the second, L > R or R > L. We have a set of vector

representations of transcripts already assigned to a class cn
(known as the ‘training data’) and we use these to train the

classifier. Then we feed the trained classifier with a new set of

unseen transcripts (the ‘test data’) and we expect it to map

these new data to one of the classes of interest. For both

classification tasks 10-fold cross validation was performed:

data were divided into 10 subsets of equal size and the clas-

sificationmethod trained 10 times, each time using a different

combination of 9 subsets for training and the remaining

subset for testing. The result is the average performance of the

classifier on all 10 test sets.

http://www.cs.waikato.ac.nz/ml/weka
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3.1. ML classifiers

Two versions of the naive Bayes (NB) approach to ML classifica-

tion were used. NB classifiers are implementations of Bayes’

theorem,which concerns thedegree towhich the likelihoodof a

hypothesis being correct is contingent on previously unknown

information. The term ‘naive’ derives from the fact that the

classifier assumes the features it uses to classify texts to be

conditionally independent given the class. Although the

assumption of independence is rarely true, NB is reported to

perform well even on complex tasks where it is clear that the

strong independence assumptions are false (Russell andNorvig,

1998).

More formally, to calculate the probability of observing a

feature vector x! comprising features x1 to xm, given a class c

under the NB assumption, the following holds:

pð x!jcÞ ¼ pðx1;.; xnjcÞ ¼
Ym
i¼1

pðxijcÞ: (1)

In order for NB to be used as a classifier for a new transcript

x! it is easier to work with the posterior probability (i.e., that

the hypothesis is correct given some new information):

pðcj x!Þ ¼ pðcjx1;.xnÞfpðcÞpðx1jcÞ.pðxnjcÞ: (2)

or

pðcj x!ÞfpðcÞ$pð x!jcÞ
where p(c) refers to the prior probability that a transcript be-

longs to class c, which according to the maximum likelihood

estimate is simply the ratio of the number of transcripts

belonging to the particular class to the overall number of

transcripts. The prior probability for the class SD is therefore

(32/42) ¼ .76, and for the class NC (10/42) ¼ .24.

The NB classifier computes the class of each transcript by

finding the one that maximizes the value of pðcÞ$pð x!jcÞ, using
the Bayes probabilistic model (equation 2), together with the

maximum a posteriori (MAP) decision rule. Thus, NB classifies a

transcript to a class using the classification function:

classifyð x!Þ ¼ argmaxcpðcÞ
Ym
i¼1

pðxijcÞ (3)

where c is one of the possible classes; argmaxc indicates the

classwith the highest value for the function that follows it; p(c)

is the prior probability assigned to a given class; and p(xijc) is
the probability that the word feature with the value xi belongs

to a transcript of class c.

NB classifiers have a number of variants, which calculate

p(xijc) in subtly different ways (McCallum and Nigam, 1998).

We now introduce the two versions used in the present

study: Naive Bayes Gaussian (NBG) and Naive Bayes Multi-

nomial (NBM). We describe how each version computes

pð x!jcÞ, and how the values are exploited in the classification

process.

3.1.1. NBG
The value of the probability pð x!jcÞ is obtained under the

assumption that the features are normally distributed across

the transcripts in the corpus. The class for each transcript is

therefore computed using the formula:
pð x!jcÞ ¼
Ym

g
�
xi; mi;c; si;c

�
: (4)
i¼1

where g(xi..) is the normal distribution for each feature in each

category c, m is the mean, and s is the standard deviation of

these distributions (Metsis et al., 2006). By analogy with

equations (3) and (4), we obtain the following classification

function:

classifyð x!Þ ¼ argmaxcpðcÞ
Ym
i¼1

g
�
xi; mi;c; si;c

�
: (5)

3.1.2. NBM
For this classifier, a multinomial distribution is assumed for

each of the features. Such a feature distribution is assumed to

workwell with data that can easily be turned into frequencies,

such asword counts in a text. If xi is the frequency of a wordwi

in a transcript d, then the probability of a transcript given its

class is obtained from the formula:

pð x!jcÞ ¼ pðjdjÞ$jdj!$
Ym
i¼1

pðwijcÞxi
xi!

: (6)

and the classification function used to assign each transcript

to a class from:

classifyð x!Þ ¼ argmaxcpðjdjÞ$jdj!$
Ym
i¼1

pðwijcÞxi
x1!

: (7)

3.2. Feature selection algorithm

Not all features are of equal relevance in a classification

problem, and identification of those making the largest

contribution can improve classificationperformance aswell as

providing insights into the differences between the two

document sets. To establish the relevance of individual unig-

ram features to the classificationmethodsdescribed above,we

used the Information Gain algorithm (Mitchell, 1997). This al-

gorithm creates a decision tree to establish the purity of the

groups into which each feature divides the to-be-classified

instances. The information gain (IG) associated with a

feature is defined as the difference in entropy (or randomness)

of the sample before and after the creation of subsamples on

the basis of that feature. For a binary classification into groups

A and B, entropy (H) over a sample (T ) is formally defined as:

HðTÞ ¼ �PðAÞlogðPðAÞÞ � PðBÞlogðPðBÞÞ: (8)

where P(A) and P(B) are the probability density functions for A

and B. The IG for a feature X in a sample T is:

IGðT;XÞ ¼ HðTÞ �HðTjXÞ: (9)

which becomes:

IGðT; XÞ ¼ HðTÞ �
X

v˛valuesðXÞ

�jTvj
jTj

�
HðTvÞ: (10)

where values (X ) is the set of possible values for feature X and

Tv is the subset of T in which feature X has value v. A feature

whose values all belong to only one of the two categories

would have an entropy of 0, giving the feature a very high

value of IG, while one whose values always belong to both

categories would have an entropy value closer to 1, and a

lower IG value.

http://dx.doi.org/10.1016/j.cortex.2013.05.008
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Table 2 e Frequencies in transcripts of each class of words
associated with positive values of information gain for the
semantic dementia versus control classification task.

Feature IG Frequency

SD NC

Picnic .46 6 17

Kite .34 10 12

Blanket .32 4 13

Even .32 1 0

Dock .30 1 2

This .29 47 0

With .29 26 30

A .27 287 169
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4. Results

4.1. Characteristics of the text corpus

The corpus of SD andNC transcripts contained 6381 individual

word tokens and 744 unique word types. The SD corpus con-

tained 4781 word tokens and 643 types. There were no dif-

ferences between the mean word counts of the SD [150.7 (sd

71.9)] versus NC [155.8 (sd 54.1)] [t(40) ¼ .21, p > .05], or of the

L > R [149.2 (sd 62)] versus R > L [153.5 (sd 77.2)] transcripts

[t(30) ¼ .15, p > .05]; or between the mean type:token ratios

within these groups [SD vs controls: t(40)¼ .53, p> .05; L> R vs

R > L: t(30) ¼ .24, p > .05].

Pail .22 0 5

The .21 228 127

Two .21 4 9

People .21 21 19

Flying .20 19 14

Up .20 23 0

Radio .19 7 8

Playing .18 5 10

Not .17 25 0

Something .17 24 0

Shore .16 0 7

Flagpole .16 0 3

Well .16 29 1

Sailing .15 2 5

Basket .15 3 6

By .15 4 6

Woman .15 7 11

You .15 53 3

Thing .15 21 0

Flag .15 13 11

Waving .15 5 6

Know .14 50 1

Down .14 13 0

Off .12 3 5

Remember .12 16 0

Taken .10 0 2

Apparently .10 0 2

Behind .10 0 2

Running .10 0 2

Picnicking .10 0 2

Relaxed .10 0 3

Blowing .10 0 3

Seem .10 0 2

Lawn .10 0 3

First .07 3 0
4.2. Discriminating features

The features in the SD versus NC and L > R versus R > L dis-

tinctions that were associated with positive values of IG are

listed in Table 2 (for the SD vs NC problem) and Table 3 (for

L> R vs R> L), with the selected features ranked in order of IG.

Note that features are considered as relevant to the

distinction rather than to one or other of the two classes. As

an indicator of the relative importance of a feature to one class

or the other, we also show the frequency of occurrence of each

feature in the transcripts belonging to the two classes of in-

terest. Consistent with earlier studies of discourse (Bird and

Lambon Ralph, 2000; Garrard and Forsyth, 2010), the selected

features that occur more often in NC transcripts consist of

content words that appear in relatively low written and

spoken frequency in published corpora (e.g., ‘picnic’, ‘blanket’,

‘sailing’ and ‘pail’), while those occurring more often in SD

scripts include generic terms (e.g., ‘thing’, ‘something’) and

components of metanarrative statements (e.g., ‘you’, ‘know’

and ‘remember’). The features found to be relevant to the L> R

versus R > L distinction were fewer in number, but generally

more indicative of one category over the other, from which it

would be predicted that using selected features would result

in a greater improvement in the classifiers’ performance on

this distinction. It is noted that six out of the seven content

words in the list occurmore frequently in the R> L transcripts

suggesting a greater degree of semantic impairment in the

L> R group, thoughmetanarrative elements (such as ‘am’ and

‘sure’) are also more frequent in this group.

Finally, it should be noted that, as mentioned in 3.2, values

of IG depend on how ‘easy’ it is for the algorithm to reach a

result (i.e., in as few steps as possible in the decision tree). As

an example, the word ’dog’ appears about three times more

often in SD transcripts, but does not have a high IG value. This

is because the frequency values of the word can belong to

either category, requiring the algorithm to go further down the

decision tree before a concrete result can be obtained,

increasing the entropy of the feature, and reducing its chances

of being selected as a discriminative feature and thus assigned

a high IG value. For IG it is important how distinctly distrib-

uted are the frequencies of the words in the two classes: the

more different the frequency values of each word associated

with the two classes, the more important it becomes for IG.

For the diagnostic classification, 43 word features (6% of

the total) were selected out of the 744 unique words
comprising the original feature set, while in the laterality

classification only 14 words (2.2%) were selected from the

original 643. These findings suggest that only a subset of

features is likely to contribute to either of the two classifi-

cation tasks, and raises the possibility that reduction of the

dimensionality problem achieved using a feature selection

approach could enhance the performance of classification

algorithms. The dimensionality problem can be caused by

large or redundant data sets in many classification tasks

and can have an effect on the competence of classifiers to

make efficient generalizations on unseen data. Classifica-

tion accuracy will therefore be reported for analyses based

on the entire set of features, and on the restricted sets.

http://dx.doi.org/10.1016/j.cortex.2013.05.008
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Table 3 e Frequencies in transcripts of each class of words
associated with positive values of information gain for the
semantic dementia patients showing predominant left
(L > R) versus predominant right (R > L) hemisphere
atrophy.

Feature IG Frequency

L > R R > L

Is .22 54 78

Am .16 1 7

Beach .16 1 7

Blanket .16 0 4

Flying .16 8 11

Ok .16 0 3

Picture .16 0 3

Sailboat .16 3 10

Sure .16 0 4

Uh .16 0 5

Now .13 8 0

Drinking .11 5 0

Fluid .10 0 2

c o r t e x 5 5 ( 2 0 1 4 ) 1 2 2e1 2 9 127
4.3. Classification accuracy

Accuracy of classification was measured by determining each

model’s ability correctly to assign a classification of SD versus

NC, or L > R versus R > L, to each transcript, compared with a

baseline condition in which all transcripts were assigned to

the larger of the two classes. Results are expressed as the

proportion of instances correctly classified. Accuracies ach-

ieved by each classificationmodel were compared statistically

to the baseline condition and to one another.

4.3.1. SD versus controls
Table 4 shows the confusion matrix for the SD versus NC

classification solutions of the two classifiers using the com-

plete feature set (i.e., all word types) (top half of the table), and

those features that were selected by the IG algorithm (bottom

half), together with their accuracy scores. Both classifiers

show a significantly higher level of accuracy than that of the

baseline condition (.76) (p< .01 for all comparisons) using both

the full set of unigram features and the IG selected subset.

Using the restricted feature set, the performance of NBG is
Table 4 e Classification accuracy achieved by the two
machine learning algorithms on the SD versus NC
categorization task, using the full lexical feature set (top)
and only those features with positive information gain
values (bottom).

Naı̈ve Bayes
Gaussian

Naı̈ve Bayes
multinomial

Classification SD NC SD NC

All features Category SD (n ¼ 32) 32 0 29 3

NC (n ¼ 10) 1 9 0 10

Accuracy .98 .93

Selected

features

Category SD (n ¼ 32) 32 0 29 3

NC (n ¼ 10) 0 10 0 10

Accuracy 1 .93
marginally improved, while that of NBM is unchanged, though

the former comparison failed to reach statistical significance.

4.3.2. L > R versus R > L
Table 5 displays the confusion matrices for the L > R versus

R > L classification solutions of the two models, together with

their accuracies, for both the full and the IG selected feature

sets. When the full feature set was used, NBM yielded signif-

icantly greater accuracy (p < .01) than that of the baseline

condition (.66), while NBG resulted in more classification er-

rors (of both types) and accuracy that was not statistically

different from baseline. Separate t-tests indicated that the

accuracy achieved by NBM was significantly greater than that

of NBG (p < .05). The NBG approach performed with greater

accuracy when the reduced feature set was used, a difference

that reached statistical significance (p < .05), while the accu-

racy of NBM was unaffected.

The significant improvement in the performance of the

NBG classifier when it is presented with the restricted feature

set is consistent with previous evidence of the adverse influ-

ence of redundant or irrelevant features on its performance

(John et al., 1994; Rantanamahatana and Gunopoulos, 2003).
5. Discussion

The analyses reported in this paper support the idea that

clinically relevant distinctions can be derived from samples of

discourse using nothing more than the lexical frequency data

inherent in the transcripts, as previously proposed by Garrard

and Forsyth (2010).

The present study applied an analytical approach derived

from the ML literature to a fresh set of transcripts, obtained

from a larger group of patients using a different speech gen-

eration task. The average length of the speech samples sub-

jected to the new analyses was also greater than those used in

the 2010 study (150 vs 93.1 for SD and 153 vs 111.4 for controls),

though there were no differences in length or simple lexical

variety (type to token ratio) between any of the groups that

were compared with one another. Moreover, to the task of

separating SD from control discourse samples the present

study added a novel discrimination between SD patients with

distinct patterns of asymmetry in the degree of atrophy

evident in the right and left-temporal lobes. Behavioural and
Table 5 e Classification accuracy achieved by twomachine
learning algorithms on the L > R versus R > L SD group
categorization task, using the full lexical feature set (top)
and only those features with positive information gain
values (bottom).

Naı̈ve Bayes
Gaussian

Naı̈ve Bayes
multinomial

Classification L > R R > L L > R R > L

All features Category L > R (n ¼ 21) 17 4 21 0

R > L (n ¼ 11) 6 5 4 7

Accuracy .68 .88

Selected

features

Category L > R (n ¼ 21) 20 1 20 1

R > L (n ¼ 11) 3 8 3 8

Accuracy .88 .88

http://dx.doi.org/10.1016/j.cortex.2013.05.008
http://dx.doi.org/10.1016/j.cortex.2013.05.008


c o r t e x 5 5 ( 2 0 1 4 ) 1 2 2e1 2 9128
neuropsychological differences between SD patients with

these complementary patterns of atrophy have been exten-

sively documented (Evans et al., 1995; Lambon Ralph et al.,

2001; Thompson et al., 2003) but there had been no attempts

to date to compare the characteristics of the connected speech

produced by the two variants.

A variety of different approaches can be used to create ML

classifiers (see Korde and Mahender (2012) for a review), but

we chose to focus on the naive Bayes (NB) approach. Apart

from a desire to minimize complexity in the presentation of

methods and results, the motivation was that the specific

models we adopted are particularly well suited to classifica-

tions involving word frequency data (Eyheramendy et al.,

2003), though this does not mean that we consider other ML

classifiers not to be worthy of investigation. Indeed, we intend

to apply other models, such as support vector machines

(Joachims, 1998), and structured models that can exploit word

order and thus overcome the limitations of the ‘bag-of-words’

assumption, to these and similar clinical datasets.

To summarize our findings: using two variants (Gaussian

(NBG) and multivariate (NBM)) of the naive Bayes approach,

we found classifiers that could distinguish between SD pa-

tients and controls and between L > R and R > L SD patients

with a high degree of accuracy. We also found that accuracy

was influenced, to a variable extent, by the amount of

redundancy (as indexed by low values of IG) in the feature set

that was used for the classification. Both classifiers performed

well in at least one of the two classification tasks, confirming

that the general method, and the choice of unigram fre-

quencies as feature data, were appropriate to the problem of

classifying transcripts from these clinical groups. The differ-

ences in performance found between the two classifiers was,

inmost cases, not supported by statistical tests. The exception

was the case of the L > R versus R > L classification task using

the full feature set, in which the superior performance of NBM

over NBG was significant. As described in Methods, NBM uses

a multinomial distribution to describe the feature vector,

while NBG uses a Gaussian distribution, of which the former

better simulates the real distribution of the feature vector.

Finally, our results showed how training the classifiers with a

restricted set of automatically selected features can lead to

increased accuracy, supporting the idea that reducing the

amount of information available to a classifier can help it to

achieve accurate distinctions between classes of interest. At a

more practical level, a reduced set of feature can help to

reduce the learning and running times of the classifiers e an

important advantage when working with large data sets. The

IG algorithm proved to be an effective way of achieving such

feature reduction for the present purposes.

The fact that the categories of interest to this study were

associated either with different vocabularies or different fre-

quencies of certain usages can provide insights into how the

language characteristics of these groups differ from one

another. We used the IG algorithm to identify the set of words

that contributed most to the two distinctions. In keeping with

thefindingsofpreviousstudies (GarrardandForsyth,2010;Bird

andLambonRalph, 2000), theSDversusNCclassification relied

heavily on the presence of words that were overrepresented in

one class or the other: generic and deictic terms (e.g., ‘some-

thing’and ‘this’) andmarkersofmetanarrativeutterances (e.g.,
‘know’ and ‘remember’), were almost exclusively associated

with the SD group; while a number of low frequency content-

bearing words (e.g., ‘shore’, ‘pail’ and ‘lawn’) only occurred in

NC descriptions. Note, however, that some words with high

values of IG (e.g., ‘kite’ and ‘people’) are features of both groups

of transcripts in roughly equal numbers, indicating that higher

order attributes, such aswords that typically occur in the same

transcript, are of high discriminant value.

It is less easy to ‘caricature’ the speech typical of the L > R

and R > L subgroups, due to the small number of features that

achieved high values of IG. The relative overrepresentation of

content-bearing words (e.g., ‘sailboat’, ‘blanket’ and ‘beach’)

in the R> L transcripts would, however, be consistentwith the

idea that this clinical variant is associated with a milder se-

mantic impairment than L > R (as was demonstrated by the

comparative performances on more conventional neuropsy-

chological tests). The differential frequencies of usages such

as ‘uh’, ‘ok’ and ‘sure’ may, however, mark more subtle

qualitative difference in style of delivery that would be more

difficult to detect and quantify using standard instruments.

Further exploration of this possibility in a ML framework,

using additional observations derived from QPA (which

include sentence and utterance length, the proportional oc-

currences of words belonging to individual grammatical

classes, pauses, distortions, and other indicators of disordered

phonology, and fluency) to enrich the feature set, will help to

characterize this difference more precisely. Future studies

should also compare the performance of other classifiers,

explore the performance of the approach in languages other

than English, and consider features based only on the pres-

ence or absence (rather than the frequency) of each word type

in a transcript.

In conclusion, by applying an approach that was developed

for and has proved useful in tasks related to digital document

classification and authorship attribution to clinical language

data, we have shown how clinically relevant distinctions can be

supported using data derived entirely from transcripts of con-

nected speech. Real-world clinical value would follow if the

approach could be shown to be sensitive to more common

clinical distinctions [such as between the connected speech of

patients with early Alzheimer’s disease, vascular cognitive

impairment, and controls (Ahmed et al., 2012)]. Studies of lan-

guagedataacquired frommembersof thesegroupsarecurrently

in progress.
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